Profile decomposition and phase control for circle-valued maps in one dimension
نویسنده
چکیده
When 1 < p <∞, maps f in W1/p,p((0,1);S1) have W1/p,p phases φ, but the W1/p,pseminorm of φ is not controlled by the one of f . Lack of control is illustrated by “the kink”: f = eıφ, where the phase φ moves quickly from 0 to 2π. A similar situation occurs for maps f : S1 → S1, with Moebius maps playing the role of kinks. We prove that this is the only loss of control mechanism: each map f : S1 → S1 satisfying | f | W1/p,p ≤ M can be written as f = eıψ K ∏ j=1 (Ma j ) ±1, where Ma j is a Moebius map vanishing at a j ∈D, while the integer K = K( f ) and the phase ψ are controlled by M. In particular, we have K ≤ cp M for some cp. When p = 2, we obtain the sharp value of c2, which is c2 = 1/(4π2). As an application, we obtain the existence of minimal maps of degree one in W1/p,p(S1;S1) with p ∈ (2−ε,2). Résumé. Décomposition en profils et contrôle des phases des applications unimodulaires en dimension un. Si 1 < p <∞, les applications f appartenant à W1/p,p((0,1);S1) ont des phases φ dans W1/p,p, mais la seminorme W1/p,p de φ n’est pas contrôlée par celle de f . L’absence de contrôle est illustrée par “le pli”: f = eıφ, où la phase φ augmente rapidement de 0 à 2π. Pour des applications f :S1 →S1, le même phénomène apparaît, avec les transformations de Moebius jouant le rôle des plis. Nous prouvons que cet exemple est essentiellement le seul : toute application f :S1 →S1 telle que | f | W1/p,p ≤ M s’écrit f = eıψ K ∏ j=1 (Ma j ) ±1, où Ma j est une transformation de Moebius s’annulant en a j ∈ D, tandis que l’entier K = K( f ) et la phase ψ sont contrôlés par M. En particular, nous avons K ≤ cp M pour une constante cp. Pour p = 2, nous obtenons la valeur optimale de c2, qui est c2 = 1/(4π2). Comme application, nous obtenons l’existence d’une application minimale de degré un dans W1/p,p(S1;S1) avec p ∈]2−ε,2[.
منابع مشابه
Monitoring Nonlinear Profiles Using Wavelets
In many manufacturing processes, the quality of a product is characterized by a non-linear relationship between a dependent variable and one or more independent variables. Using nonlinear regression for monitoring nonlinear profiles have been proposed in the literature of profile monitoring which is faced with two problems 1) the distribution of regression coefficients in small samples is unkno...
متن کاملHuman Gait Control Using Functional Electrical Stimulation Based on Controlling the Shank Dynamics
Introduction: Efficient gait control using Functional Electrical Stimulation (FES) is an open research problem. In this research, a new intermittent controller has been designed to control the human shank movement dynamics during gait. Methods: In this approach, first, the three-dimensional phase space was constructed using the human shank movement data recorded from the healthy subjects. Then...
متن کاملA Self-starting Control Chart for Simultaneous Monitoring of Mean and Variance of Simple Linear Profiles
In many processes in real practice at the start-up stages the process parameters are not known a priori and there are no initial samples or data for executing Phase I monitoring and estimating the process parameters. In addition, the practitioners are interested in using one control chart instead of two or more for monitoring location and variability of processes. In this paper, we consider a s...
متن کاملپایش پروفایل های غیر خطی در فاز II با استفاده از موجکها
In many industrial processes, quality of a process can be characterized as a nonlinear relation between a response variable and explanatory variables. In several articles, use of nonlinear regression is suggested for monitoring nonlinear profiles. Such regression has two disadvantages. First the distribution of the regression coefficients cannot be specified for small samples and second with in...
متن کاملLinear relations, monodromy and Jordan cells of a circle valued map
In this paper we review the definition of the monodromy of an angle valued map based on linear relations as proposed in [3]. This definition provides an alternative treatment of the Jordan cells, topological persistence invariants of a circle valued maps introduced in [2]. We give a new proof that homotopic angle valued maps have the same monodromy, hence the same Jordan cells, and we show that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017